Author Archives: admin

What is e.i.r.p.

Effective Isotropic Radiated Power (e.i.r.p). What is it?

e.i.r.p. = Pout (from TX) – losses (in antenna and feeder etc) in dB + antenna gain in dBi.

The regulations for 5 MHz in Sweden with max 15 W e.i.r.p. will have some strange consequences:

An inverted vee dipole with apex at 13 m has a gain of 6.7 dBi. If losses in tuner and feedline amount to 1 dB, Pout should be 5.7 dBs lower than 15 W or 4 W. It holds for an antenna over even ground with average conductivity.

For a vertical ¼ wave GP with 2 to 4 radials at 2 m Pout max is rather 30W.

Click on the image for a better view.

Inv vee dipole at right angle to the antenna plane:                           Vertical:

Military telephone cable as the antenna wire. How big are the losses?

The DL-1000, which is the defense’s telephone wire, consists of 7 strands. 4 from copper and 3 galvanized steel wires and an insulating coating. It is popular as antenna wire. The question is how it stands against copper wire regarding losses on short wave.

The MMANA simulation program allows you to select materials in the antenna conductors. The difference in material losses between copper and steel wire amounts to more than 3 dB for a 20m dipole.

To make a practical measurement, a dipole for 14 MHz was mounted with the center 7 meters above ground and the ends one meter lower. A MINI VNA was connected to the 37 meter long RG 213 coaxial cable and the length was retracted. However, the cable is simulated as loss-free.

In addition to 1.5 square mm copper, 1 mm plastic coated soft steel wire was used, which is used in the garden.

The feed impedance was measured at the resonance point when it was pure resistive.

Results:

Impedance ohm

Copper         53

DL 1000        64.7

Steel wire     74.2

 

Thus, an additional loss resistance of 11.7 ohm for DL ​​1000 and 21.2 ohm for steel wire. This corresponds to 18% or 0.85 dB extra power loss for DL ​​1000 and 28.6% or 2.3 dB for the steel wire.

Additional information:

The DC resistance of a strand of DL1000 is 7 ohms/100m.

DL-1000 som antenntråd. Hur stora blir förlusterna?

DL-1000, som är försvarets telefontråd består av 7 kardeler. 4 förtennta koppartrådar och 3 förzinkade ståltrådar och ett isolerande hölje. Den är populär som antenntråd. Frågan är hur den står sig mot FK 1,5 när det gäller förluster på kortvåg.

I simuleringsprogrammet MMANA kan man välja material i antennledarna. Skillnaden i materialförluster mellan koppar- och ståltråd uppgår till över 3 dB för en 20m-dipol.

För att göra en praktisk mätning monterades en dipol för 14 MHz med mitten 7 meter över mark och ändarna någon meter lägre. En MINI VNA anslöts till den 37 meter långa koaxialkabeln av typ RG 213 och kabellängden simulerades bort. Dock simuleras kabeln som förlustfri.

Förutom FK 1,5 testades 1 mm plastbelagd mjuk ståltråd, som används i trädgården.

Matningsimpedansen mättes vid resonanspunkten när den var rent resistiv.

Resultat:

Impedans ohm

FK 1,5                    53

DL 1000               64,7

Ståltråd               74,2

Alltså en extra förlustresistans på 11,7 ohm för DL 1000 och 21,2 ohm för ståltråden. Det motsvarar 18 % eller 0,85 dB extra effektförlust för DL 1000 och 28,6 % eller 2,3 dB för ståltråd.

 

Nu har jag simulerat vad som händer med en LW på 100 meter på 14 MHz:

När jag mätte på en dipol ökade matningsimpedansen med ca 12 ohm när jag använde DL1000 i stället för FK 1,5. Det betyder att ett förlustmotstånd på 12 ohm ligger i serie med matningsimpedansen för koppartråd.

För ståltråd var motsvarande förlustmotstånd 21 ohm.

 

Jag lade då motsvarande förlustmotstånd i alla strömbukar på långwiren. Man kan ju se den som 10 seriekopplade halvågsdipoler.

 

Resultatet blev att en 100 meters longwire på 14 MHz med DL1000 har 1,6 dB sämre förstärkning än en LW av FK !,5 och en longwire av ståltråd har 2,26 dB sämre förstärkning.

För en halvvågsdipol var motsvarande förluster 0,85 respektive 2,3 dB.

Ju längre antennen är desto viktigare med bra material i tråden (och givetetvis låga förluster i marken).

 

I siffror: Gain Cu = 10,7 dBi, Gain DL1000 = 9,13 dBi och Gain ståltråd = 8,44 dBi.

Det senare resultatet överensstämmer inte med vad man får om man väljer stål som material i antenntråden i MMANA. Då blir Gain = 7,1 dBi dvs 3,63 dB sämre än med koppar. Samma sak gäller för halvågsdipoler.

 

Som jämförelse har en 3 elements monobander en förstärkning av ca 12 till 13 dBi.

 

 

Om trådlängden ökas till ca 200 meter ökar förstärkningen:

Gain Cu = 12,16 dBi, Gain DL1000 = 10,18 dBi

dvs ytterligare 1,43 (Cu) respektive 1,05 dB (DL1000)

Med Kopparlina:

Med en tråd från DL1000:

 

DL-1000 som antenntråd. Hur stora blir förlusterna?

2017-12-23

Mätningar gjordes på en dipol för 20 m. Som referens användes FK 1,5. Förutom DL 1000 mättes förlusterna på 1 mm plastisolerad mjuk ståltråd.

DL 1000 hade 0,85 dB större förluster än FK 1,5 och ståltråden 2,3 dB större förluster.

Detaljer kan studeras under “Antenner”:

DL-1000 som antenntråd. Hur stora blir förlusterna?

 

Nu har jag simulerat vad som händer med en LW på 100 meter på 14 MHz.

När jag mätte på en dipol ökade matningsimpedansen med ca 12 ohm när jag använde DL1000 i stället för FK 1,5. Det betyder att ett förlustmotstånd på 12 ohm ligger i serie med matningsimpedansen för koppartråd.

För ståltråd var motsvarande förlustmotstånd 21 ohm.

 

Jag lade då motsvarande förlustmotstånd i alla strömbukar på långwiren. Man kan ju se den som 10 seriekopplade halvågsdipoler.

 

Resultatet blev att en 100 meters longwire på 14 MHz har 1,6 dB sämre förstärkning än en LW av FK !,5 och en longwire av ståltråd har 2,26 dB sämre förstärkning.

För en halvvågsdipol var motsvarande förluster 0,85 respektive 2,3 dB.

Ju längre antennen är desto viktigare med bra material i tråden (och givetetvis låga förluster i marken).

 

I siffror: Gain Cu = 10,7 dBi, Gain DL1000 = 9,13 dBi och Gain ståltråd = 8,44 dBi.

 

Det senare resultatet överensstämmer inte med vad man får om man väljer stål som material i antenntråden i MMANA. Då blir Gain = 7,1 dBi dvs 3,63 dB sämre än med koppar. Samma sak gäller för halvågsdipoler.

 

My Beverage antennas

There are three bevs:

1. A 110 m unterminated wire in 290 dgs. Works great for North America.

2. A 185 m unterminated wire in 240 dgs. Great both ways.

3. A 130 m terminated wire in 60 dgs. Just a little bit better than number 2. Discriminates signals from SW with about 2 S-units. A bit disappointing.

Common mode measurement of DL1000 telephone cable.

I’ve been a bit sceptical about the balance of the military telephone cable called DL1000 in Sweden. It almost looks as if one wire is wound around the other rather than two twisted wires. So I made a measurement as outlined in the sketch below while listening on strong signals:

As reference I connected both wires in parallel connected directly to the measurement receiver.

The results were:

Frequency     Common mode rejection

7 MHz            25 dB

3.5 MHz         40 dB

There was no difference with and without the load resistor R.

So the telephone line is OK as a feeder for receiving antennas on 80 and below as regards to common mode pick up but doubtful on 40m.

Measuring attenuation of DL1000 military telephone cable.

I was using a 50m length of DL1000 telephone cable with a transformer with binocular BN73-202 at each end with a turn’s ratio of 2:3. There was a MINI VNA Pro used in transmission mode connected to the transformers.

 

 

 

 

 

 

Attenuation in the transformers:

 

Attenuation in transformers plus 50 m of DL1000 telephone cable:

 

 

Replacing the Beverage feeding system

I’m replacing my Beverage feeding system. The relays in the switchbox was powered through the feeder which was 40 m of buried RG-6 coax plus 70 m of military phone line in the trees. I had problems with noise from the relay voltages so now replacing it with buried outdoor UTP cable feeding the relays separated from the RF feeder.

The impedance of a UTP pair is 100 ohms and measured attenuation over 100 meters was as follows:

1.8 MHz                1.5 dBs

3.5 MHz                1.7 dBs

10.1 MHz             2.6 dBs

I took the transformers from the old 70 ohm system and measured the 50 ohm SWR all the way through 100 m UTP to a 560 ohm resistor in place of the Beverage wire:

The SWR was 1.35 at 1.8 MHz, 1.05 at 3.5 MHz and 1.55 at 10.1 MHz

 

Today Oct 4, the new beverage feeding system is up-and-running. Works as expected but the ground lead is too long picking up too much signal, especially on 40 and up. Had to move the relay unit from one tree to another. Will try to improve that.

Today November 8 I improved the ground with an extra ground stake. There is also a new NE wire running at 65 Dgs. It’s a 130 m long terminated wire.